Oldest fossils on Earth discovered in 3.7bn-year-old Greenland rocks

Oldest fossils on Earth discovered in 3.7bn-year-old Greenland rocks

According to recent research, tiny sediment ripples on an ancient seafloor, captured inside a 3.7 billion-year-old rock in Greenland, possibly the earliest fossils of living organisms ever found on Earth.

The research, led by Allen Nutman, head of the School of Earth and Environmental Sciences at the University of Wollongong in Australia, described the discovery of what looks like tiny waves, 0.4 to 1.5 inches (1 to 4 centimeters) high, frozen in a cross-section of the surface of an outcrop of rock in the Isua Greenstone Belt in southwestern Greenland, a formation made up of what geologists regard as the oldest rocks on the Earth’s surface.

The researchers said the ripples are the fossilized remains of cone-shaped stromatolites, layered mounds of sediment, and carbonates that build up around colonies of microbes that grow on the floor of shallow seas or lakes. 

According to the scientists, the new discovery, detailed online today in the journal Nature, supports theories that life on Earth originated during the so-called Hadean eon more than 4 billion years ago, a period of intense volcanic activity when large meteorites and icy comets frequently bombarded Earth. This was also the time when the first bodies of water formed on the planet’s surface.

The rock outcrop was found only after a series of warm summers in southwestern Greenland caused large patches of snow at the site to melt earlier than normal, revealing rocks that had not been examined by researchers since the Isua Greenstone Belt was first explored in the 1980s, Nutman told Live Science.

The stromatolites in figure a are from Greenland; those in c and d are younger stromatolites from Western Australia. Figure b shows the layers created by microbes as they formed the Greenland stromatolites (blue lines). ‘Storms’ are several overlapping stromatolites.

“Most of the rocks there are very deformed and modified by later mountain-building processes, but you do find just very tiny little areas that have survived with their original volcanic or sedimentary structures not destroyed,” Nutman said. “But this is the first one of the surviving structures where we actually have stromatolites.”

Under pressure

Remarkably, the structures were found in an outcrop of metamorphic rock that was once subject to intense underground heating and pressure, which distorted their original shapes and changed their chemical composition.

Allen Nutman (left) and Vickie Bennet (right) with a specimen of 3.7-billion-year-old stromatolites from Isua, Greenland

“The overall features, such as the shape of the stromatolites, are preserved,” Nutman said. “But some of the finer details of the very fine layering have certainly been erased — although, as we show in the paper, there are vestiges of that left.”

Sediment structures that look like stromatolites can form without the involvement of microbial life, but the researchers said they examined the chemistry and minerals in the rocks and were able to establish that they contain the fossilized remains of a colony of ancient microbes.

The 3.7-billion-year-old structures described in the new study are about 220 million years older than the fossils previously regarded as the oldest known fossils on Earth. Those 3.5-billion-year-old stromatolites, found in sedimentary rocks in Western Australia, precipitated over billions of years without metamorphic heating. Abigail Allwood, an astrobiologist at NASA’s Jet Propulsion Laboratory in Pasadena, California, whose 2006 study about the Australian fossils established their biological origin, said the new study will likely face close scrutiny. 

“These kinds of discoveries always do [cause controversy], especially when they first come out, and in this case, it’s particularly amazing because they were found in metamorphic rocks that have been significantly altered and transformed from their original characteristics,” Allwood told Live Science.

Allwood reviewed the new study by Nutman and his colleagues for a separate opinion piece published in the journal Nature. Allwood’s 2006 study is cited in the new paper, but she did not contribute directly to the latest research.

“It’s remarkable that they have found [the structures], and they’ve done a good job of analyzing what’s there — but the alteration that the rocks have seen means that there’s just a whole lot of stuff that you’d typically like to see to make such an extraordinary claim, that just isn’t preserved,” she said.

Life or nonlife?

Geochemist Balz Kamber, chair of geology and mineralogy at Trinity College Dublin in Ireland, has also studied the stromatolite fossils from Western Australia. He told Live Science that the new finds would no doubt face further scientific tests to ᴀssess the strength of the claims for a biological origin. But he added that the new structures appear to be a far better prospect for evidence of ancient life than another set of fossils reported nearly two decades ago on Greenland’s Akilia Island, which were later shown not to have a biological origin.

Kamber also said there can be little doubt that the conical structures identified in the new research are the result of sedimentation on the floor of a marine environment, regardless of whether they can be shown to have a biological origin. This means that the structures are not only evidence of standing bodies of water on the Earth’s surface 3.7 billion years ago, but also bodies of land crossed by rivers that carried chemical solutes into the ancient oceans, he said.

Both Kamber and Allwood also said the new findings have implications for the field of astrobiology and the search for evidence of past life on other planets — particularly on Mars. Kamber said these potential clues about the very early emergence of life on Earth in the Hadean period supports his own recent research, published earlier this year, about the prospects for life in the water-filled craters caused by meteorite and comet impacts on the early Earth.

“I think the enclosed impact basins at the tail end of the bombardment at 3.8 [billion] to 3.85 billion years ago would have made great places for life to emerge from,” he said.

Allwood added that there is also clear evidence that, at the time the rocks at Isua were forming 3.7 billion years ago, conditions on Mars were similar to those on early Earth.

“[T]here were similar environments in bodies of water standing at the surface of Mars, offering a similar kind of environment to the ones that hosted the early evidence of life on Earth, at Isua and younger,” she said.

Until now, there had been a gap between the start of the fossil record on Earth and the youngest areas on Mars, where there was good evidence for standing bodies of water in the past.

“And you had to imagine that life could have arisen there before they dried up — but now at least we may have one example in the fossil record showing us that life can arise that quickly,” Allwood said.

Related Posts

Roman Bath and Magnificent Mosaics Used as Stables by the Villagers For Many Years

Roman Bath and Magnificent Mosaics Used as Stables by the Villagers For Many Years

Roman Bath and Magnificent Mosaics Used as Stables by the Villagers For Many Years Archaeological excavations in the ancient city of Herakleia in Muğla’s Milas district in western Türkiye unearthed a striking discovery from the Roman period. Mosaics with detailed depictions of animals such as crocodiles, dolphins, flamingos, and eels were found on the floor of the …

Scientists identified a unique engraving that could be the oldest three-dimensional (3D) map in the world

Scientists identified a unique engraving that could be the oldest three-dimensional (3D) map in the world

Scientists identified a unique engraving that could be the oldest three-dimensional (3D) map in the world Scientists working in the Ségognole 3 cave, located in the famous sandstone mᴀssif south of Paris have identified a unique engraving that could be the oldest three-dimensional (3D) map in the world. A recent study published in the Oxford …

Golden Tongues and Nails discovered on mummies from the Ptolemaic Period in Egypt

Golden Tongues and Nails discovered on mummies from the Ptolemaic Period in Egypt

Golden Tongues and Nails discovered on mummies from the Ptolemaic Period in Egypt Archaeologists have uncovered tombs decorated with colorful inscriptions and ritual scenes, as well as unusual mummies and unique funerary objects, including 13 striking golden tongues and nails, at the Al-Bahnasa archaeological site in Egypt’s Minya governorate. The Oxyrhynchus Archaeological Mission, led by …

Sixth-Century Sword Unearthed in Anglo-Saxon Cemetery near Canterbury, England

Sixth-Century Sword Unearthed in Anglo-Saxon Cemetery near Canterbury, England

Sixth-Century Sword Unearthed in Anglo-Saxon Cemetery near Canterbury, England A spectacular sixth-century sword has been unearthed in an Anglo-Saxon cemetery in southeast England, and archaeologists say it is in an exceptional state of preservation and is similar to the sword found at Sutton Hoo, an Anglo-Saxon cemetery in Suffolk. The find was made in a …

2,000-Year-Old Unique Composite Fish Scaled Armor Found in Ancient Tomb

2,000-Year-Old Unique Composite Fish Scaled Armor Found in Ancient Tomb

2,000-Year-Old Unique Composite Fish Scaled Armor Found in Ancient Tomb Chinese researchers have recently found fish-scaled armor in the tomb of Liu He, Marquis of Haihun from the Western Han Dynasty (206 BC-AD 25), in Nanchang, the capital of eastern China’s Jiangxi province. According to the Provincial Insтιтute of Archaeology and Cultural Relics, this is …

Discovery Shedding Light on Ancient Maritime Trade: 1,500-Year-Old Trade Shipwreck Found off Türkiye’s Ayvalık

Discovery Shedding Light on Ancient Maritime Trade: 1,500-Year-Old Trade Shipwreck Found off Türkiye’s Ayvalık

Discovery Shedding Light on Ancient Maritime Trade: 1,500-Year-Old Trade Shipwreck Found off Türkiye’s Ayvalık ‘Turkish Sunken-Ships Project: Blue Heritage’, a 1500-year-old trade shipwreck was found off the coast of  Ayvalık district of Balıkesir. Under the direction of ᴀssociate professor Harun Özdaş, director of the Underwater Research Center (SUDEMER) at Dokuz Eylül University, the mapping of the underwater cultural …